Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.
Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
We want to connect the people who have knowledge to the people who need it, to bring together people with different perspectives so they can understand each other better, and to empower everyone to share their knowledge.
Tolong dong kak yg bagian a dan d nya saja
persamaan trigonometri a. 2 sin² x - 7 sin x + 3 = 0 (2 sin x - 1)(sin x - 3) = 0 sin x = 1/2 atau sin x = 3 TM sin x = 1/2 x = 30° + k.360° ... (1) sin x = 1/2 x = 150° + k.360°... (2) k bilangan bulat [0°,360°] HP = {30° , 150°} d. 3 sin x + cos² x - 3 = 0 3 sinRead more
persamaan trigonometri
a.
2 sin² x – 7 sin x + 3 = 0
(2 sin x – 1)(sin x – 3) = 0
sin x = 1/2 atau sin x = 3 TM
sin x = 1/2
x = 30° + k.360° … (1)
sin x = 1/2
x = 150° + k.360°… (2)
k bilangan bulat
[0°,360°]
HP = {30° , 150°}
d.
3 sin x + cos² x – 3 = 0
3 sin x + (1 – sin² x) – 3 = 0
sin² x – 3 sin x + 2 = 0
(sin x – 1)(sin x – 2) = 0
sin x = 1 atau sin x = 2 TM
sin x = 1
x = 90° + k.360°
[0° , 360°]
HP = {90°}
See lessDiketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. tentukan jarak titik c ke garis FH
dimensi tiga kubus r = 6 cm O tengah FH EG = r√2 = 6√2 cm GO = 1/2 EG = 3√2 cm CO ⊥ HF Jarak C ke FH = CO = √(CG² +GO²) = 1/2 r√6 = 3√6 cm
dimensi tiga
kubus
r = 6 cm
O tengah FH
EG = r√2 = 6√2 cm
GO = 1/2 EG = 3√2 cm
CO ⊥ HF
Jarak C ke FH
= CO
= √(CG² +GO²)
= 1/2 r√6
= 3√6 cm
See lessKak tolong kak Buat besok di kumpulkan
persamaam kuadrat melengkapkan kuadrat sempurna (a - b)² = a² - 2ab + b² x² - 20x + 36 = 0 x² - 2.10x + 10² = -36 + 10² (x - 10)² = 64 (x - 10)² = 8² atau (x - 10)² = (-8)² x - 10 = 8 → x = 18 atau x - 10 = -8 → x = 2 HP = {2 , 18}
persamaam kuadrat
melengkapkan kuadrat sempurna
(a – b)² = a² – 2ab + b²
x² – 20x + 36 = 0
x² – 2.10x + 10² = -36 + 10²
(x – 10)² = 64
(x – 10)² = 8² atau (x – 10)² = (-8)²
x – 10 = 8 → x = 18
atau
x – 10 = -8 → x = 2
HP = {2 , 18}
See lessTentukan himpunan (hp) dari pertidaksamaan berikut menggunakan sifat |14-2x|<4
nilai mutlak |x| < a → -a < x < a • |14 - 2x| < 4 -4 < 14 - 2x < 4 -4 - 14 < 14 - 2x - 14 < 4 - 14 -18 < -2x < -10 -18/-2 > -2x/-2 > -10/-2 9 > x > 5 5 < x < 9 HP = {x| 5 < x < 9, x ∈ R}
nilai mutlak
|x| < a → -a < x < a
•
|14 – 2x| < 4
-4 < 14 – 2x < 4
-4 – 14 < 14 – 2x – 14 < 4 – 14
-18 < -2x < -10
-18/-2 > -2x/-2 > -10/-2
9 > x > 5
5 < x < 9
HP = {x| 5 < x < 9, x ∈ R}
See lessTolong dikerjakan Pakai Cara Jam 12 malam ini dikumpulin, Terimakasih Banyak
aplikasi pola bilangan penomoran • sisi kiri jalan bernomor ganjil nomor rumah yg terbentuk : 1, 3, 5, 7, ... a = suku pertama = 1 b = beda = U2 - U1 = 3 - 1 = 2 Un = a + (n - 1)b Un = 1 + 2(n - 1) Un = 1 + 2n - 2 Un = 2n - 1 • sisi kanan jalan bernomor genap nomor rumah yg terbRead more
aplikasi pola bilangan
penomoran
• sisi kiri jalan bernomor ganjil
nomor rumah yg terbentuk :
1, 3, 5, 7, …
a = suku pertama = 1
b = beda = U2 – U1 = 3 – 1 = 2
Un = a + (n – 1)b
Un = 1 + 2(n – 1)
Un = 1 + 2n – 2
Un = 2n – 1
• sisi kanan jalan bernomor genap
nomor rumah yg terbentuk :
2, 4, 6, 8, ...
a = 2
b = 4 – 2 = 2
Un = 2 + 2(n – 1)
Un = 2 + 2n – 2
Un = 2n
Pola bilangan berbeda pada kedua sisi jalan
• kiri → Un = 2n – 1
• kanan → Un = 2n
See lessTentukan 3 bilangan selanjutnya dari pola barisan bilangan berikut
pola bilangan a. pola 1 → +3 → 3, 6, 9, 12, 15 pola 2 → ×2 → 4, 8, 16, 32 3 , 4 , 6 , 8 , 9 , 16 , 12 , 32 , 15 b. pola → 1², 2², ... , n² 1 , 4 , 9 , 16 , 25 , 6² , 7² , 8² c. pola → x2 10 , 5 , 20 , 10 , 40 , 20 , 80 , 40 , 160 d. pola → +5 -5 , 0 , 5 , 10 , 15 ,Read more
pola bilangan
a.
pola 1 → +3 → 3, 6, 9, 12, 15
pola 2 → ×2 → 4, 8, 16, 32
3 , 4 , 6 , 8 , 9 , 16 , 12 , 32 , 15
b.
pola → 1², 2², … , n²
1 , 4 , 9 , 16 , 25 , 6² , 7² , 8²
c.
pola → x2
10 , 5 , 20 , 10 , 40 , 20 , 80 , 40 , 160
d.
pola → +5
-5 , 0 , 5 , 10 , 15 , 20 , 25
e.
-1 , 2 , -1 , 3 , -1 , 4 , –1 , 5 , –1
f.
pola → +5 -2 +5 -2 …
5 , 10 , 8 , 13 , 11 , 16 , 14 , 19 , 17 , 22
g.
pola 1 → ×3
pola 2 → +8
2 , 3 , 6 , 11 , 18 , 19 , 54 , 27
h.
pola 1 → x3
pola 2 → +3
1 , 2 , 3 , 5 , 9 , 8 , 27 , 11 , 81
See lessHimpunan penyelesaian nyaa
persamaan trigonometri 4 cos² x - 3 = 0 cos² x = 3/4 cos x = √(3/4) cos x = 1/2 √3 atau x = -1/2√3 interval [0° , 360°] cos x = 1/2 √3 x = 30° atau x = 360° - 30° = 330° cos x = -1/2 √3 x = 180° - 30° = 150° atau x = 180° + 30° = 210° HP = {30° , 150° , 210° , 330°}
persamaan trigonometri
4 cos² x – 3 = 0
cos² x = 3/4
cos x = √(3/4)
cos x = 1/2 √3 atau x = -1/2√3
interval [0° , 360°]
cos x = 1/2 √3
x = 30° atau x = 360° – 30° = 330°
cos x = -1/2 √3
x = 180° – 30° = 150°
atau
x = 180° + 30° = 210°
HP = {30° , 150° , 210° , 330°}
See less