Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.
Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
We want to connect the people who have knowledge to the people who need it, to bring together people with different perspectives so they can understand each other better, and to empower everyone to share their knowledge.
Tentukan penyelesaian dari persamaan mutlak berikut
nilai mutlak a. |3x + 2| = 6 - 4x 3x + 2 = 6 - 4x 3x + 4x = 6 - 2 7x = 4 x = 4/7 3x + 2 = -(6 - 4x) 3x - 4x = -6 - 2 -x = -8 x = 8 syarat : 6 - 4x ≥ 0 4x ≤ 6 x ≤ 6/4 x ≤ 3/2 nilai x yg memenuhi : x = 4/7 b. |a| = b → (a + b)(a - b) = 0 dan b ≥ 0 |3x + 8| = 4Read more
nilai mutlak
a.
|3x + 2| = 6 – 4x
3x + 2 = 6 – 4x
3x + 4x = 6 – 2
7x = 4
x = 4/7
3x + 2 = -(6 – 4x)
3x – 4x = -6 – 2
-x = -8
x = 8
syarat :
6 – 4x ≥ 0
4x ≤ 6
x ≤ 6/4
x ≤ 3/2
nilai x yg memenuhi :
x = 4/7
b.
|a| = b → (a + b)(a – b) = 0
dan b ≥ 0
|3x + 8| = 4 – 2x
(x + 12)(5x + 4) = 0
x = -12 atau x = -4/5
syarat :
4 – 2x ≥ 0
x ≤ 2
nilai x :
-4/5 dan -12
See lessNilai x yang memenuhi persamaan
eksponen 25^(x² - 5x + 7) = (1/25)^(x - x² - 15) 25^(x² - 5x + 7) = 25^-(x - x² - 15) lihat pangkat nya x² - 5x + 7 = -x + x² + 15 -5x + x = 15 - 7 -4x = 8 x = 8/-4 x = -2
eksponen
25^(x² – 5x + 7) = (1/25)^(x – x² – 15)
25^(x² – 5x + 7) = 25^-(x – x² – 15)
lihat pangkat nya
x² – 5x + 7 = -x + x² + 15
-5x + x = 15 – 7
-4x = 8
x = 8/-4
x = -2
See lessRasionalkan bentuk akar berikut ini ke bentuk paling sederhana
aljabar √2 / 3√8 = √2 / (3 × √4 × √2) = 1/(3 × √4) = 1/(3 × 2) = 1/6
aljabar
√2 / 3√8
= √2 / (3 × √4 × √2)
= 1/(3 × √4)
= 1/(3 × 2)
= 1/6
See lessdiketahui kubus ABCD,EFGH dengan panjang rusuk 4cm tentukan,1.jarak titik F ke garis CE tolong di bantu MLM ini di kumpul soalnya
dimensi tiga kubus r = 4 cm ∆CFE siku di F X pada CE FX ⊥ CE Jarak F ke CE = FX = EF × FC / EC = r × r√2 / r√3 = 1/3 r√6 = 4/3 √6 cm
dimensi tiga
kubus
r = 4 cm
∆CFE siku di F
X pada CE
FX ⊥ CE
Jarak F ke CE
= FX
= EF × FC / EC
= r × r√2 / r√3
= 1/3 r√6
= 4/3 √6 cm
See lessHimpunan Penyelesaian dari bentuk ke 5 2|2x-8|²-7|2x-8|-15=0
nilai mutlak 2|2x - 8|² - 7|2x - 8| - 15 = 0 2a² - 7a - 15 = 0 (2a + 3)(a - 5) = 0 a = -3/2 atau a = 5 a = -3/2 |2x - 8| = -3/2 TM tidak ada nilai x yg memenuhi a = 5 |2x - 8| = 5 2x - 8 = 5 atau 2x - 8 = -5 2x - 8 = 5 x = (5 + 8)/2 x = 13/2 2x - 8 = -5 x = (-5 + 8Read more
nilai mutlak
2|2x – 8|² – 7|2x – 8| – 15 = 0
2a² – 7a – 15 = 0
(2a + 3)(a – 5) = 0
a = -3/2 atau a = 5
a = –3/2
|2x – 8| = -3/2 TM
tidak ada nilai x yg memenuhi
a = 5
|2x – 8| = 5
2x – 8 = 5 atau 2x – 8 = -5
2x – 8 = 5
x = (5 + 8)/2
x = 13/2
2x – 8 = -5
x = (-5 + 8)/2
x = 3/2
HP = {3/2 , 13/2}
See lessSebuah tabung memiliki volume 36.960 cm³, jika tinggi tabung 15 cm, maka jari-jari tabung tersebut adalah
v = 36960 cm³ t = 15 cm v = πr² t r² = v/(πt) r² = 36960 / (22/7 × 15) r² = 36960 × 7/(22 × 15) r² = 784 r² = 28² r = 28 cm
v = 36960 cm³
t = 15 cm
v = πr² t
r² = v/(πt)
r² = 36960 / (22/7 × 15)
r² = 36960 × 7/(22 × 15)
r² = 784
r² = 28²
r = 28 cm
See lessSebuah tabung memiliki jari-jari dan panjang masing-masing 21 cm dan 38 cm. Tentukan berapakah volume tabung tersebut
r = 21 cm panjang = tinggi tabung = t = 38 cm volume tabung = luas alas × tinggi = πr² × t = 22/7 × 21² × 38 = 22 × 3 × 21 × 38 = 52668 cm³
r = 21 cm
panjang = tinggi tabung = t = 38 cm
volume tabung
= luas alas × tinggi
= πr² × t
= 22/7 × 21² × 38
= 22 × 3 × 21 × 38
= 52668 cm³
See less